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Many people share the intuition that in some choice situations using a 

lottery among (some of) the acts available to an agent is the morally 

right thing to do. In the philosophical literature several justifications  

for this intuition are presented. The most famous is John Broome’s 

justification, which is based on the idea that what makes using a lottery 

the morally right thing to do (when it is the morally right thing to do) is 

that it is fairer than any of the definite choices available to the agent.1 

Thus, Broome’s explanation of what makes a lottery right has two parts: 

first he presents an account of the fairness of lotteries, and second he 

argues that in some situations the fairness consideration is strong 

enough to make the fair act the right act. 

In this paper I will present a new justification for the rightness (in    

a sense specified below) of lotteries. According to my justification a 

lottery is justified in some situations where an agent suffers from moral 

uncertainty, i.e., in some situations when an agent is unsure what the 

morally right thing to do is (however, not in every situation in which this 
                                                 
1 See, e.g., Broome 1990, 1991, 1994. Other discussions of the questions include 
Hooker 2005; Sher 1980; Saunders 2009; Rescher 1969; Glover 1977. 
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is the case). I will argue that in these situations using a lottery is the 

best one can do, given one’s moral uncertainty. I will also characterize 

the set of situations in which a lottery is justified according to my 

account and present an explication for the term “the best one can do”. 

However, unlike Broome, I will not argue that using a lottery, when it 

is the right thing to do according to my account, is also the fair thing to 

do. One could take a further step and try to argue that what makes        

a lottery right according to my account is also what makes it fair. Hence, 

one could argue that being fair is just doing the best one can to do the 

right thing. I think there might be good reasons to take this further 

step,2 but I will not argue for it here. Here I only present a justification 

for the use of lotteries, not an account of fairness. 

Is my account a rival to Broome’s account? Not necessarily and 

actually there are reasons to think that the two are never rival accounts, 

as they seem to address different issues. One can at the same time   

hold the position that some lotteries are morally right for the reasons 

Broome presents and that some are right (in a different sense of 

“rightness”) for the reasons I present (and that some may be right for 

other reasons). 

The rest of the paper will be organized in the following way. In      

the first section, using Broome’s discussion of the tension between the 

sure-thing principle and the rightness of lotteries, I will present some 

background issues that will be of later use (I will not, however, present 

Broome’s account). In the second section, I will discuss the idea of moral 

uncertainty; and in the third section, I will present my account for the 

rightness of lotteries using a formal framework. In the fourth section,    

I will discuss the recommendations that my account gives in some cases 

and will argue that these provide independent support for my account. 

 

THE FAIRNESS OF LOTTERIES 

Broome’s starting point is the intuition that: “Sometimes a lottery is   

the fairest way of distributing a good” (Broome 1990, 87). Broome     

also holds that because of this fact “there will certainly be some 

                                                 
2 Hooker (2005) acknowledges (and refers to others who acknowledge) that “fair is 
often used with a very broad meaning. A ‘fair decision’, in this very broad sense          
of ‘fair’, means a decision that appropriately accommodates all applicable moral 
distinctions and reasons” (Hooker 2005, 331). This understanding of the term “fair” is 
in line with the “being fair as doing the best one can” thesis, only that under the 
explication presented here for “doing the best one can” such an understanding           
of fairness can also explain why lotteries are sometimes fair. 
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circumstances where it is better to hold a lottery than to choose the best 

candidate deliberately” (Broome 1990, 99). 

This latter claim, poses a problem for Broome that he has to deal 

with even before presenting his justification for the intuition he started 

with: it seems that any moral preferences ordering that ranks a lottery 

between two actions above both of these actions must violate an 

intuitive principle of rationality called the sure-thing principle (SP).    

The sure-thing principle requires that when an agent is uncertain what 

the consequences of some of the actions available to him will be, then 

when he evaluates these actions he can disregard any state of the world 

in which all of them bring about the same outcome, as shown in Table 1: 

 
Table 1 

 ω
1 

ω
2
 

L A B 

A
 

A A 

B B B 

 

The SP requires that if the agent prefers act A to act B then he 

should prefer act A to act L and act L to act B. Thus, it is easy to see that 

a lottery between two alternatives should never be preferred to both of 

them. 

One way to deal with this problem is to reject the SP in moral 

contexts.3 However, this is not the strategy Broome adopts and he       

(as well as others) has presented very convincing arguments against      

it (see Broome 1984, section 2). To deal with this problem Broome 

suggests that in cases in which a lottery seems to be morally preferable 

to any of the alternatives over which it is defined, we have to include  

the fairness achieved by using the lottery in the description of the 

outcomes.4 By following this suggestion, the SP is not violated because  

it does not apply. This is illustrated in Table 2: 

 

                                                 
3 This is the position adopted, for example, by Diamond (1967), who first introduced 
this problem.  
4 See Karni 1996, for a similar suggestion. 
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Table 2 

 ω
1
 ω

2
 

L A achieved by a lottery. B achieved by a lottery. 

A 
A achieved by a definite 

choice. 

A achieved by a definite 

choice. 

B 
B achieved by a definite 

choice. 

B achieved by a definite 

choice. 

 

Since, under the new interpretation of the situation, the two possible 

outcomes that act L might bring are different from the outcomes acts A 

and B bring, the SP does not apply to the decision problem and so is not 

violated.5 

However, regardless of the question of whether the SP must be 

violated in cases where a lottery is ranked above all of the acts over 

which it is defined, the following claim does hold: whenever an agent 

prefers a lottery to all the definite acts over which it is defined,           

the agent does not maximize the expectation of a quantity that we can 

call goodness.6 He may be maximizing expected moral value—i.e., the 

expectation of the overall value of an act, given both the act’s expected 

goodness and its fairness—but not expected goodness. 

The last observation is the reason why I have lingered on the 

discussion above. The important distinction I want to make is between 

accounts—like Broome’s—that recommend a lottery even in cases in 

which it is possible for the agent to choose a definite act with higher 

expected goodness, and accounts that recommend a lottery only when it 

is impossible for the agent to do that. Accounts of the latter type can, 

for example, recommend a lottery in cases in which the agent is morally 

indifferent between two acts. In such cases, any lottery between the two 

                                                 
5 In the literature there are several objections to Broome’s use of the “redescribing the 
outcomes” strategy (see Steele 2006, for a good overview). Broome (1991) discusses 
one of them: the violation of the “rectangular field assumption”. I will not discuss 
these objections here. See Bradley 2007, however, for a formal framework that resolves 
Broome’s worries. 
6 “Goodness”, as I use the term here, refers to the moral value of an outcome (i.e., an 
act in a specific state), not including the moral value added to the act that brings this 
outcome in virtue of it being a fair lottery. “Expected goodness” is to be understood in 
an analogous way. I think that Broome uses the term in the same way most of the time 
(at least in his earlier work), but as there are some places in which he makes comments 
that can be understood as implying the contrary, I do not want to argue that he does. 
In any case, this is the way I am going to use the term here. 
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acts has the same expected goodness as each of the two acts and so it is 

impossible for the agent to choose an act with higher expected 

goodness. However, such accounts cannot recommend a lottery in cases 

in which the agent morally prefers one definite act to another.  

The account that I will put forward here can do—in an important 

sense—both: it never recommends a lottery when it is possible for the 

agent to choose a definite act with higher expected goodness, and it 

does sometimes recommend a lottery over all the definite acts over 

which it is defined, even when the agent is not morally indifferent 

between all of them. How can this be the case? The answer lies in my 

use of the idea of moral uncertainty. I will discuss the idea in more 

detail in the next section, but even before doing that, it is easy to see 

how using this idea can make such an account possible. 

When an agent is certain that one of the acts available to him has 

higher expected goodness than the other(s), but is not certain which  

one it is, then although it is metaphysically possible for him to choose 

the act with the highest expected goodness (it is, after all, one of the 

acts available to him), it is not epistemically possible for him to do so.  

In some such cases (but not in all of them), my account will recommend 

a lottery. Thus, in those cases, a lottery will be recommended even 

though the agent is certain that there is another act available to him 

with higher expected goodness, and yet the requirement to always 

choose the act with the highest expected goodness (when it is 

epistemically possible to do that) is kept. 

So my account recommends choosing a lottery—when it does 

recommend that—not because this is the “objectively” right thing to do, 

but rather because, given the agent’s epistemic state, this is the only 

“subjectively” right thing for him to do.  

To avoid confusions, a terminological comment is necessary here.  

As mentioned—and as will be discussed at more length in the last 

section—my account is consistent both with the position according to 

which being a fair lottery adds some positive moral value to an act,    

and with the position according to which this is never the case. In order 

to avoid taking a stand in this debate, I need to use three different terms 

that describe different types of moral features of acts. I have already 

introduced the first one—“goodness”—explicitly: the “goodness” of an 

act is the moral value of the outcome that an act will actually deliver 

(not including the moral value added to it in virtue of it being a fair 

lottery).  
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Now we see that there are two more moral features of acts that will 

play a role in my discussion. The first one is the overall moral value     

of an act (including the possible moral value added to the act in virtue 

of it being a fair lottery). I will use the term “overall moral value” to 

refer to this feature. The second one is the possible moral value added 

to an act in virtue of it being a lottery. I will use the term “fairness”      

to refer to this feature. 

When an agent does not suffer from moral uncertainty he ought to 

choose the act with the highest overall moral value. I have just used the 

term “the objectively right act” in order to refer to this act and will 

continue to do that. However, when an agent does suffer from moral 

uncertainty he cannot choose the objectively right act with certainty. 

Which act should the agent choose in such a case? Whatever the answer 

to this question is, we need a term in order to refer to this act. I have 

just used the term “the subjectively right act” in order to refer to it and  

I will continue to do that. 

Notice that in light of the distinction between the best act and the 

right act, we can already distinguish between two types of moral 

uncertainty: regarding which act is the objectively right act to choose 

and regarding which act is the best act (when the “best act” is the       

one with the highest expected goodness). My discussion of moral 

uncertainty, in the next two sections, will only refer to the latter type of 

moral uncertainty, i.e., to uncertainty regarding which act is the morally 

best act (and for convenience I will just use the term “best act”). 

It should be noted, though, that by limiting my discussion only to 

this type of moral uncertainty, I do not mean to suggest that Broome’s 

account—and others like it—are either false or cannot be applied to the 

cases that I discuss. I offer an alternative account for the use of lotteries 

that can justify choosing a lottery even when being a fair lottery does 

not add any moral value to an act (or adds some moral value but not 

enough to make the fair act, the right act), but this account can live 

peacefully with other accounts. In the last section, I will go back to the 

above distinction and will discuss the advantages that my account has 

in this context. I move now to discuss the idea of moral uncertainty. 

 

MORAL UNCERTAINTY 

The idea of being uncertain regarding what is the morally best thing     

to do is the key element that will help me develop my account. It is 

possible to make a distinction between three different types of 
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uncertainty regarding which act is the morally best act to choose in a 

given situation, only one of which will be dealt with here. The first type 

is that of such uncertainty that results exclusively from uncertainty 

regarding the truth of some non-normative claims. For example, an 

agent might be uncertain whether one act, A, is better than another act, 

B, because he is uncertain what the consequences of the acts would be. 

If the agent knew for sure what their consequences would be, he would 

not be uncertain regarding which act is better. There are some 

discussions in the literature (see, e.g., Diamond 1967) regarding the 

question of how a rational moral agent should make his decisions in  

the face of such uncertainty, but these will not concern us here. 

The second type of uncertainty is that which cannot be reduced to 

uncertainty regarding the truth of some non-moral claim, but still can be 

reduced to uncertainty regarding the truth of some general moral claim. 

For example, an agent might be uncertain whether one act, A, is      

better than another act, B, only because he is uncertain whether 

consequentialism is true or not. If he was sure that consequentialism is 

true (or not) he would not be uncertain regarding which act is the best 

act to choose. This type of uncertainty is the one which is usually 

discussed in the literature under the title “moral uncertainty” (see, e.g., 

Lockhart 2000; and Sepielli 2009). 

Most of the accounts that belong to this literature treat moral 

uncertainty much in the same way that decision theory treats 

uncertainty regarding states of the world, i.e., by requiring that in      

face of moral uncertainty one should maximise expected goodness 

(relative to the moral uncertainty one suffers from). Such a requirement, 

however, is based on two assumptions: 1) one is able to tell how good  

or how bad every possible act is, according to each of the moral theories 

(or general moral claims) one believes might be true; and 2) one is able 

to compare these values across theories.  

Much of the discussion in the literature is dedicated to an 

examination of the second assumption, i.e., to the question of which 

principles should govern the inter-theoretical comparison of moral 

value. However, in some cases, prior to dealing with the second 

assumption, one has to deal with the first one. Before one can present a 

prescription for how to compare the degrees of moral value different 

moral theories assign to an act, one has to explain how it is possible to 

get those degrees according to a single theory.  
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While in some choice situations it seems that the theories 

themselves might offer an answer to this question, in other choice 

situations this cannot be the case. Situations of the latter kind are 

usually (but maybe not always) those in which different moral 

considerations (according to the same theory) push in different 

directions and thus, in order to assign exact levels of goodness to the 

acts, the theory must assign weights to the different considerations. 

We can judge, for example, that saving the life of another person is 

better than slightly improving his wellbeing, but it is really hard for us 

to say exactly how much better it is. Thus, when we have to decide 

between saving the life of one person and slightly improving the 

wellbeing of many people we may become uncertain regarding what    

we ought to do in a specific case (i.e., when the number of people whose 

wellbeing we can improve is high enough). The same is true for the 

moral judgements we make, under the assumption that a specific moral 

theory (or a general moral claim) is the right one. One can accept, for 

example, utilitarianism, or even a specific type of utilitarianism, but still 

be uncertain regarding how different aspects that increase utility ought 

to be weighed against each other. 

Notice that in this kind of case the moral uncertainty arises because 

we do not have direct access to degrees of moral value. If we had such 

access we would know how to weigh the different moral dimensions 

against each other and would just form our moral preferences according 

to the levels of expected goodness of the different acts. 

Now, one might argue that although an agent does not have direct 

access to the level of goodness of the different acts available to him;    

he does have direct access to the level of goodness of the different acts 

conditional on some betterness relation holding between them. In other 

words, it might be that an agent who is uncertain whether act B is better 

than act C, but is certain that act A is better than both act B and act C,  

is also certain, regarding every possible lottery between A and C, that if 

it is the case that act B is better than act C, this lottery is either better or 

worse than act B. This is what it means, for a rational agent, to have 

direct access to the level of goodness of the acts conditional on some 

betterness relation holding between them.  

I do not want to argue that such cases never happen. I certainly 

believe that in many cases, people have partial information regarding 

degrees of goodness conditional on some betterness relation holding. 
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However, I also believe that there are cases in which this type of 

information is unavailable. 

Consider an agent who tries to follow the strategy described above 

when coming to make a moral decision between two acts, of which she 

is uncertain which is better than which. The agent formulates a number 

of hypotheses regarding the degrees of moral value of the acts available 

to her, conditional on either of the two betterness relations holding. 

Then she has to assign a probability value to each one of these 

hypotheses. On what basis can this be done? Surely we do not want to 

argue that she should do this arbitrarily. Arguing this is like arguing 

that she should choose an act arbitrarily as by assigning different 

probabilities to the hypotheses, she can make either of the acts the one 

that maximises expected goodness. 

A more plausible answer is that she should do this according to her 

actual degrees of beliefs in these hypotheses, which should probably   

be based on what she takes to be moral evidence. However, it is not 

clear what can constitute evidence for a specific hypothesis regarding 

the exact degree of moral value of an act, other than the kind of 

betterness judgements that assigning such a degree to the act (together 

with assigning other degrees to other acts) leads to. Actual moral 

theories do not give us exact degrees of moral values in the kind of 

situations I am referring to and people do not generally have intuitions 

regarding such levels. What people do when they have to assign such 

levels is to implicitly judge which one is better among many possible 

acts. 

Thus, in such choice situations, since moral agents do not have 

direct access to the degrees of moral value that different theories assign 

to different acts, the need arises to present an account for decision 

making under conditions of moral uncertainty that does not make     

any reference to these degrees of moral value. This is not because the 

requirement to maximize expected moral value is not a principle of 

rationality. I believe it is. Rather, it is because when one does not have 

access to these degrees, one cannot possibly obey this requirement and 

thus the need arises for an alternative decision rule. 

This last type of moral uncertainty, i.e., moral uncertainty that 

cannot be reduced either to uncertainty regarding non-moral claims or 

to uncertainty regarding general moral claims, is the one which I am 

going to discuss in the next section. 

 



NISSAN-ROZEN / A NEW JUSTIFICATION FOR THE USE OF LOTTERIES 

VOLUME 5, ISSUE 1, SPRING 2012 54 

MORAL UNCERTAINTY AND LOTTERIES 

When an agent is uncertain regarding the morally best thing to do in      

a specific situation because she does not have access to the degrees of 

moral value of the different acts available to her, but still must make a 

decision, what should she do? The immediate answer is, I think, that she 

should try to minimize this uncertainty as much as she can: she should 

spend some time reflecting on the matter, she should consult with 

people whose opinions she values, she should read some books, and    

so on. But when she is done with this process, when she has used any 

sources of moral information available to her, then if she is still 

uncertain regarding what is the best thing to do, she has no plausible 

alternative but to go with the judgements she is more certain about.    

So if she believes that some act A is better than another act B more 

strongly than she believes that B is better than A, she should choose A 

over B. Let us call this requirement the Likelihood of Betterness 

Constraint (LBC). 

Such a prescription clearly falls short of the ideal of maximizing 

expected moral value (which the agent cannot obey because she does 

not have access to degrees of moral value), but it does require that the 

agent make use of the information she does have, i.e., her degrees of 

belief regarding the moral betterness relations that hold between 

different acts.7 

Notice, however, that if one accepts the LBC, but still wants one’s 

moral choices to be transitive, one commits oneself to the requirement 

that for any three alternatives, A, B and C, if one believes it is more 

likely than not that A is better than B and that it is more likely than not 

that B is better than C, one must believe that it is more likely than      

                                                 
7 It might be argued that there are some situations in which the agent does not even 
have enough information to allow her to assign in a non-arbitrary way degrees of belief 
to the different possible betterness relations that might hold between different acts. 
Maybe there are such cases. However, there are certainly cases in which we do feel that 
we have enough moral evidence to assign in a non-arbitrary way degrees of belief to 
the different possible betterness relations, while we do not have enough moral 
evidence to assign in a non-arbitrary way degrees of beliefs to the different possible 
hypotheses regarding the exact level of moral value of each possible act. The reason 
for that is the one discussed in the previous section: in situations in which more than 
one morally significant aspect is involved, and thus the need to weigh the different 
aspects against each other arises, we usually do that using the betterness relations that 
we take to hold between different acts. See footnote 11, for a formal illustration of this 
point: the information that we need in order to assign degrees of belief to different 
betterness relations holding is strictly weaker than the information that we need        
in order to assign degrees of belief to different hypotheses regarding the degrees of 
moral value of different acts. 
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not that A is better than C. This condition does not follow, however, 

from the requirement that the agent believes with probability 1 that the 

betterness relation is transitive, as there are many probability 

distributions over the set of all possible orderings of alternatives that 

do not respect it.8  

When this happens and one finds oneself in a situation in which in 

order to obey the LBC one must violate transitivity, at least one of these 

two requirements has to go. It is tempting to argue that this should be 

the LBC. This is so since it is clear that in such situations, by obeying the 

LBC, the agent will necessarily find himself violating a second-order 

moral judgement he should hold: the moral judgement that he ought to 

choose consistently when making moral choices.9 He will be violating 

this judgement by violating transitivity. Does this consideration give us 

a reason to reject the LBC? Not on its own, I will argue now. 

Implicit in the objection to the LBC presented in the last paragraph 

is the assumption that the moral judgement that one ought to always 

choose consistently ought always to have priority over any other    

moral judgement. However, this assumption is dubious. The rationality 

requirements get their normative force from our belief that rationality is 

a guide for choices that will best serve the agent’s interests (in our case, 

moral interests: the interests of the agent when acting as a moral agent). 

The rationality here is instrumental rationality: there is no substantive 

moral value in obeying its requirements. The moral value of obeying its 

requirements comes from the further belief that doing so will best serve 

other purposes that do have intrinsic moral value.  

                                                 
8 Think of any “Condorcet paradox” style situation. For example, consider the following 
table: 
 

1/3 1/3 1/3 

A C B 
B A C 
C B A 

 

Here, the agent believes with probability 2/3 that A is better than B, that B is 
better than C, and that C is better than A, and still gives a positive probability only to 
transitive rankings. 
9 I do not argue that this is a moral judgement the agent should hold. I assume this for 
the sake of argument as I believe it is not an unreasonable position and is indeed a 
position to which many scholars are committed. John Harsanyi argued, for example, 
that “an individual making a moral value judgment must follow, if possible, even 
higher standards of rationality than an individual merely pursuing his personal 
interests” (Harsanyi 1978, 226). The argument that follows aims at showing that,    
even if one accepts the second-order moral judgement that one’s moral judgements 
ought to be consistent, in the kind of cases that I discuss here this moral judgment     
is defeated by other considerations. 
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However, when an agent believes it is more likely that one act is 

better than another rather than vice versa, it is clear that what will best 

serve the agent’s moral interests—in the absence of sufficient 

information about degrees of moral value—is to choose this act over the 

other. Requiring that such an agent does otherwise, in the name of 

transitivity, amounts to putting the cart before the horse. It amounts    

to requiring that the agent gives priority to a moral judgement that gets 

its moral force from more fundamental moral judgements over one      

of those more fundamental moral judgements. 

One might argue that, from a wider perspective, giving such a 

priority is justified, since by choosing in an intransitive way, the agent 

exposes himself to “money pumps”, or in the moral context, to “positive 

moral value pumps”. However, this argument misses the point. If the 

agent has good reasons, in a particular case, to suspect that by choosing 

intransitively, he will be drawn into a money pump, then this 

consideration ought already to be taken into account through his 

assessment of the possible consequences of the acts available to him. 

However, the mere possibility of being money pumped, without having 

any reason to suspect that this possibility will actually be realised, should 

not matter much to an agent who must make a specific decision.  

So I think it is not the LBC that has to go in such situations. 

However, by relaxing transitivity we are left without a decision rule. 

Which act should the agent choose in a case where he has intransitive 

moral preferences over three acts and all three acts are available to him? 

Here is one possible answer: if we allow the agent to use mixed 

strategies, i.e., if we require that the set of acts available to the agent is 

convex then—under a natural condition that describes the connection 

between the agent’s factual beliefs and the agent’s moral beliefs—there 

always exists an act that the agent believes is more likely or equally 

likely better than any other act available to him. In other words, there 

exists an act such that the agent believes that no other act is better than 

it. It seems reasonable to require from the agent to choose such an act.  

This requirement can be seen as a generalisation of the requirement 

of not to choose an act to which another act is preferred, which is 

usually used to justify the transitivity axiom (e.g., Davidson, et al. 1955). 

When it is impossible for the agent to have transitive preferences, and 

when there is no act that is preferred to all the acts over which the 

intransitivity occurs, then this requirement cannot be respected. 

However, I will now show that the generalization of this requirement 
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(i.e., the requirement not to choose an act if there is another act that one 

believes it is, more likely than not, better than the first) can always be 

satisfied if the set of acts is convex, provided that one natural condition 

holds.10 

Here is the condition. First informally: the agent’s degree of belief 

that one mixed act is better than another equals his expected degree of 

belief that this act is better than the other. In order to express this 

condition formally, we need some more structure. 

Let Ω = {ω
1
… ω

n
} be a finite set of possible states. Let p be a 

probability distribution over Ω. Let D = {A, B, C…} be a set of outcomes 

and let E = {a
1
… a

k
} be a set of acts, where an act is a function from Ω to 

D. Let ≥ be the agent’s moral preference relation over E. In addition let 

>* denote the moral betterness relation between pairs of acts, i.e., >* is a 

binary relation over elements of E. For simplicity, we will assume that 

for any two elements, ai and aj, ai >* aj or aj >* ai. By assuming this,          

I am ignoring here the possibility that the agent gives a positive 

probability to the possibility that two acts are equally good, i.e., that 

neither one of them is better than the other. This assumption will make 

the discussion simpler and nothing is dependent on it. 

Since we want to allow the agent to have beliefs regarding the 

betterness relation, we will usually need to refer to the betterness 

relation as a variable. In these cases we will just use the notation “>”. 

Finally, let q be a probability distribution over all possible >*s. To be 

clear, the expression q(ai > aj) denotes the sum of the probabilities         

q gives to all >* such that ai >* aj.
11 

                                                 
10 There are certainly other decision rules one might consider as plausible candidates 
in this respect. See, for example, Loome and Sugden’s (1987) discussion of a similar 
question arising in the context of regret theory and SSB utility theory, and some of the 
articles in Arrow, Sen, and Suzumura’s (2002) edited volume, which discuss a similar 
question in the context of social choice. I am not going to argue against any of these 
possibilities. Even if rationality does not require one to choose according to the 
decision rule I have offered above—which is in the spirit of Laffond, Laslier, and         
Le Breton’s (1993) solution in the context of social choice—it would be hard to deny 
that rationality allows for using it. The discussion that follows in this section and the 
next one provides further support for this decision rule: by accepting it one gains a 
strong justification for the use of lotteries that does better—in terms of its ability to 
predict our moral intuitions regarding specific lotteries—than any other justification 
around.  
11 It is important to stress that by taking q to be a probability distribution over the    
set of all possible betterness relations, I do not commit myself, and do not intend to 
suggest, that either ordinary people or ideal rational moral agents deduce their beliefs 
regarding the betterness relations that hold between different pairs of acts from their 
beliefs over the set of all possible rankings of all the possible acts available to them. 
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As Leonard Savage (1972) does, we can define each element of D as 

the constant act (i.e., an act that gives the same outcome in every state) 

whose value is this element and require that E includes all the 

possible—constant and not constant—acts. With this we can treat       

the agent’s beliefs regarding the betterness relation between constant 

acts as his beliefs about the betterness relation between outcomes, and 

the agent’s preferences over constant acts as his preferences over 

outcomes. For convenience we will use the notation q(A>B) to refer to 

q(aA>aB) when aA is the constant act that gives A and aB is the constant 

act that gives B. 

In the interpretation, p represents the agent’s degrees of belief about 

factual matters in the world, while q represents the agent’s degrees of 

belief about the betterness relation between different acts. Now, we have 

the conceptual resources to formally express both the LBC (informally 

introduced above) and another constraint, the EBC. 

 

Likelihood of Betterness Constraint (LBC): 

1. q(ai > aj) > q(aj > ai) iff ai > aj and  

2. q(ai > aj) = q(aj > ai) iff ai = aj. 

 

Expectation of Betterness Constraint (EBC): 

For every two acts, ai and aj, 

 
                                                                                                                                               

The agents might form their beliefs in such a way (although I find it 
psychologically implausible and normatively unappealing), but nothing in the model 
requires them to do so. This is because I do not assume anything about conditional 
probabilities; that is the probability of one act being better than another conditional  
on other betterness relations holding between other acts. Thus, I do not use any 
information that one gains from access to a specific probability distribution over      
the set of all possible rankings of the acts and that one does not have if one only has 
access to the probability of one act being better than another, for all pairs of acts. 

Now we can see that the distinction made in the previous section between three 
types of moral uncertainty on a conceptual level—that is, the distinction between       
1) moral uncertainty that can be reduced to uncertainty about non-normative 
propositions, 2) moral uncertainty that can be reduced to uncertainty about which 
moral theory is the correct one, and 3) “primitive” moral uncertainty—can be 
represented formally in a straightforward way: The first kind of moral uncertainty 
happens when there is no uncertainty regarding the agent’s own preferences, the 
second happens when there is such uncertainty but all the probabilities, including    
the conditional probabilities are known to the agent, and the third happens when only 
non-conditional probabilities are known (or in other words, when the probabilities of 
conjunctions are not known). 
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Intuitively, the EBC says that one’s degree of belief that one act is 

better than another should be equal to one’s expected degree of belief 

that this act is better than the other, in case one of the two acts is better 

than the other. In other words it requires that the agent’s degree of 

belief that one act is better than another is equal to the agent’s degree 

of belief that the world is such that this act is better than the other. 

It will be useful to demonstrate how the EBC works, using an 

example. Consider the following table. 

 
Table 3 

 p(ω
1
) = 0.2 p(ω

2
) = 0.3 p(ω

3
) = 0.4 p(ω

4
) = 0.1 

a
i
 A B C B 

a
j
 B C A B 

a
A
 A A A A 

a
B
 B B B B 

a
C
 C C C C 

 

Suppose the agent’s degree of belief that outcome A is better than 

outcome B (that is that act aA is better than act aB) is 0.7, that his degree 

of belief that B is better than C is 0.8 and that his degree of belief that  

A is better than C is 0.9. What should his degree of belief be that ai is 

better than aj? According to the EBC it should be (0.2 × 0.7 + 0.3 × 0.8 + 

0.4 × 0.1) / 0.9 = 0.4666.  

Here is how the calculation goes: firstly the agent should check in 

which states the two acts give the same outcome and ignore these 

states. In our example this only happens in state ω
4
. Next, the agent 

should give each of the remaining states a weight which is equal to its 

probability and add up his weighted degrees of belief that act ai is better 

than act aj.
12 Lastly, he should normalise this sum by dividing it by the 

sum of the probabilities of all the states he did not rule out in the first 

stage. This last move is necessary in order for the agent’s degrees of 

belief to be probabilistic.  

To see why, given the EBC, there always exists a mixed act such that 

the agent believes regarding any other act that it is less likely or equally 

                                                 
12 Notice that here I used the assumption that two acts cannot be equally good. It is 
easy to see that if we relax this assumption, the EBC will have to be slightly adjusted, 
but nothing significant will change.  
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likely better than this mixed act, let us start with the case of only three 

acts with regard to which the agent has intransitive preferences, if he 

obeys the LBC. We can do this by using the following example: 

An agent has to choose between three acts that can bring about,      

in different states of the world, three possible outcomes: that all the 100 

inhabitants of village A will die, that all 200 inhabitants of village B will 

die, or that all 400 inhabitants of village C will die. Assume that the 

agent is absolutely confident that it is better to save more people than 

fewer people, thus, q(A>C)=q(A>B)=q(B>C)=1. However, the choice he 

has to make is not between sure outcomes, but between the following 

three acts: 

 

Table 4 

 p(ω
1
) = 4/9 p(ω

2
) = 3/9 p(ω

3
) = 2/9 

ai B B B 

aj A C C 

ak B A C 

 

The agent is following the two conditions mentioned above: 
 
1. EBC: for every two acts, ai and aj, 

 
 

2. LBC: for every two acts ai, aj, ai ≥ aj iff q(ai > aj) ≥ q(aj > ai). 

 
Now, since p(ω

2
)+p(ω

3
)>p(ω

1
), he believes ai is better than aj

 
 to degree 

5/9. Since p(ω
1
) >p(ω

2
), he believes that aj

 
is better than ak

 
 to degree 4/7, 

but since p(ω
2
) >p(ω

3
), he also believes that ak is better than ai to degree 

3/5 and thus he has intransitive preferences.  

We are looking now for a mixed strategy, M, over the three acts such 

that the agent will believe that M is better than or equal to each one 

them. We can look at this in the following way. When the agent is using 

a mixed strategy, he adds some uncertainty to the uncertainty he 

already suffers from: he transforms any world ωi to which he gives        

a positive probability into three worlds, the probability of each one of 

these being the multiplication of the probability of the original world by 

the probability that the mixed strategy the agent uses gives to one of the 

original acts. Here is how this is done in our example: 
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Table 5 

 
p(ω

1
)*

M(ai) 

p(ω
1
)*

M(aj) 

p(ω
1
)*

M(ak) 

p(ω
2
)*

M(ai) 

p(ω
2
)*

M(aj) 

p(ω
2
)*

M(ak) 

p(ω
3
)*

M(ai) 

p(ω
3
)

*M(aj) 

p(ω
3
)*

M(ak) 

M B A B B C A B C C 

ai B B B B B B B B B 

aj A A A C C C C C C 

ak B B B A A A C C C 

 

Now, M is preferred or equal to ai only when the agent believes it is 

more likely or equally likely that M is better than ai, i.e., when the sum of 

the degrees of beliefs that the outcomes that M brings about in every 

possible world in which M and ai bring about different outcomes, 

weighted by the probabilities of these worlds, is higher than this sum 

for ai, i.e., since we assumed that the agent’s degrees of beliefs regarding 

the betterness relations among pure outcomes are all equal to 1, when: 

 

p(ω
1
)*M(aj) + p(ω

2
)*M(ak) ≥ p(ω

2
)*M(aj) + p(ω

3
)*M(aj) + p(ω

3
)*M(ak) 

 

We can do the same for M in relation to aj and ak, and we get three 

inequalities with three variables. Each inequality can be derived from  

the other two, but we also know that M(ai) + M(aj) + M(ak) = 1. It is easy to 

see that there is a unique solution to this system in which the equality 

relation holds for all inequalities. For the values in the example, this 

solution is when M(ai) = M(aj) = M(ak) = 1/3, and in the general case:13 

 

M(ai) = (2q(aj>ak) – 1) / ((2q(aj>ak) – 1) + (2q(ai>aj) – 1) + (2q(ak>ai) – 1)) 
 

M(aj) = (2q(ak>ai) – 1) / ((2q(aj>ak) – 1) + (2q(ai>aj) – 1) + (2q(ak>ai) – 1)) 
 

M(ak) = (2q(ai>aj) – 1) / ((2q(aj>ak) – 1) + (2q(ai>aj) – 1) + (2q(ak>ai) – 1)) 
 

                                                 
13 By “the general case” I do not mean only that this solution holds for any p(.), but also 
that it holds for any q(.), and for any finite number of outcomes (over which the three 
acts are defined). Finding solutions for more than 3 acts is more difficult. I will show, 
however, that such a solution always exists. 
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These values also have an intuitive interpretation, which will be 

discussed in the next section. The story, however, does not end here, as 

it is easy to see that for every mixed strategy, such as M, there exist two 

other acts such that the agent has intransitive preferences over M and 

these two acts. In our example, this can be done in the following way: 

 
Table 6 

 
p(ω

1
)*

M(ai) 

p(ω
1
)*

M(aj) 

p(ω
1
)*

M(ak) 

p(ω
2
)*

M(ai) 

p(ω
2
)*

M(aj) 

p(ω
2
)*

M(ak) 

p(ω
3
)*

M(ai) 

p(ω
3
)*

M(aj) 

p(ω
3
)*

M(ak) 

M B A B B C A B C C 

N A A B C C A C C C 

L B A B A C A C C C 

 

The reasons are identical to the reasons for the intransitivity in the 

original example. However, notice that N and L are not mixed strategies 

over the three original acts. Given the set of the original acts and every 

mixed strategy over them, there is a unique mixed strategy that respects 

the condition that the agent should never choose a strategy when there 

exists another strategy available to him that he believes is, more likely 

than not, better. It seems, then, that in this kind of case the only rational 

choice for the agent is this mixed strategy.  

What happens, though, when the set of available strategies contains 

more acts? For example, what happens if this set contains the three acts 

from our example, acts N and L, and every mixed strategy over these 

five acts? Is it still true that there exists a unique mixed strategy, M, over 

this set, such that there is no strategy in this set that the agent believes 

is, more likely than not, better?  

The answer to the existence question is yes (I will get back to the 

uniqueness question soon). To see that, we can think of the agent as 

playing a game against himself in which the payoffs for every 

combination of strategies are the agent’s degrees of belief that one of 

these strategies is better than the other: the intuition is that when the 

agent has to make a choice, my demand from him is that, given what   

he chooses, there is no other strategy he could have chosen that he 

believes will be better. So we can think of it in the following way: the 

agent looks at the strategies available to him and asks himself—for each 
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one of them—given that I choose this strategy, will there be a better 

strategy for me to have chosen? If the answer is yes he should not 

choose that strategy. It is easy to see that this condition holds for       

the two players in the game only when they play Nash equilibrium 

strategies. 

Now, since the agent plays against himself, the game is symmetric: 

the strategies and the payoffs for each combination of strategies for the 

two players are identical. In the same way, since the two players 

represent the same agent, the equilibrium must be a symmetric one, 

since the agent can choose only one strategy. So what we have is a    

two-player symmetric game and every symmetric game has a symmetric 

Nash equilibrium (see Nash 1951). 

To see things more clearly, let us construct such a game, using our 

original example. Each player has three pure strategies, ai aj and ak and 

the payoff every player gets from choosing an act a, while the other 

agent chooses act b, is just his degree of belief that a is better than b. 

Since we assume that the agent ignores, in his reasoning, worlds in 

which the two acts give the same outcome, we can assign a payoff of ½ 

to every result in which the two players choose the same pure strategy. 

So here is the game: 

 
Table 7 

 
ai

 
aj

 
ak

 

ai
 

½ , ½ q(ai>aj) , q(aj>ai) q(ai>ak) , q(ak>ai)
 

aj
 

q(aj>ai) , q(ai>aj)
 

½ , ½
 

q(aj>ak) , q(ak>aj)
 

ak
 

q(ak>ai) , q(ai>ak)
 

q(ak>aj) , q(aj>ak)
 

½ , ½
 

 

Notice that if the agent has transitive preferences, i.e., if q(ai>aj) ≥ ½, 

q(aj>ak) ≥ ½, and q(ai>ak) ≥ ½, the only Nash equilibrium is that both 

players play the pure strategy ai. However, when the agent has 

intransitive preferences (which is the case we are interested in), i.e., 

when q(ai>aj) ≥ ½, q(aj>ak) ≥ ½, but q(ak>ai) ≥ ½, there is no pure 

strategies Nash equilibrium. However, there is a mixed strategies 

equilibrium and in this case it is unique.  
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Now, although this kind of equilibrium is not always unique, the 

following still holds: given the set of all symmetric Nash equilibrium 

mixed strategies, the agent always has transitive preferences among 

them. The reason is simple. It is a well-known fact that in a mixed 

strategies Nash equilibrium, given the strategy played by player 1, 

player 2 is indifferent between all the mixed strategies available            

to him which are defined over the set of all rationalizable strategies.     

In particular, he is indifferent between all mixed strategies which belong 

to the set of symmetric Nash equilibrium mixed strategies. Thus, the 

transitivity requirement is satisfied in a trivial way: the agent is 

indifferent between all the mixed strategies in the relevant set. So what 

we have now is a choice rule that respects the requirement that the 

agent should never choose a strategy if he believes there exists another 

strategy available to him which is better, which sometimes recommends 

(i.e., whenever the agent has intransitive preferences) the use of a mixed 

strategy.14 

To conclude, what we have shown is that if an agent respects        

the LBC and the EBC, then—even if he holds intransitive moral 

preferences— if the agent is allowed to use lotteries, there always exists 

a lottery which he believes is more likely than not better than all other 

definite acts or lotteries. Thus, for such an agent it seems that the only 

rational choice will be to choose this lottery (or, if this lottery is not 

unique, one of the lotteries included in the set). 

Recall now the discussion in the first section. One of our lessons 

from that discussion was that any account—like Broome’s account—that 

recommends lotteries also in cases where the agent is not morally 

indifferent between the definite acts which are available to him, must be 

committed to the claim that sometimes the objectively right thing to   

do is not to maximize expected goodness. By following the account 

presented here, we can see that the agent (subjectively) ought to choose 

a lottery exactly in those cases in which he cannot maximize any 

quantity anyway, i.e., when his preferences are intransitive. 

To be more precise, what I am arguing is that whenever the agent 

does not suffer from moral uncertainty he should simply choose the 

                                                 
14 Note that this result does not depend on the LBC and the EBC. Many other decision 
theories that allow for intransitive preferences can serve. For example, if instead of 
using the degrees of belief in the betterness relations as the payoffs of the game,      
we use expected regret levels, the situation will be the same. More generally, Peter 
Fishburn (1984) has proved that whenever intransitive preferences can be represented 
by an SSB utility function, this will be the case. 
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objectively right act. However, when the agent does suffer from some 

moral uncertainty and does not have an access to degrees of moral 

value, then if he obeys the LBC he might find himself having intransitive 

moral preferences. This does not mean that he believes the moral 

betterness relation is intransitive. We can assume that the agent believes 

it is transitive. However, since all he can rely on are his beliefs about 

this relation—in the kind of situations I have pointed to—he has no way 

to avoid intransitivity. Thus, in the cases where the intransitivity arises, 

it seems that the only rational thing for him to do is to choose a lottery. 

So, in my account, choosing a lottery is not an irrational thing to do, 

but rather—whenever it is justified to choose a lottery—the only rational 

thing to do. It is clear that in this account there is no need to claim that 

sometimes the objectively right thing to do is not to choose the best act: 

one can (but not “must”) argue that one ought always to choose the best 

act, but that when one is uncertain about which act that is, the only 

rational thing to do is to use a lottery. Is it also the best thing to do? 

Well, yes and no. No, in the sense that when choosing a lottery the agent 

knows for sure that there is another act available to him that brings a 

higher amount of expected goodness (but he does not know which act 

that is). Yes, in the sense that—given his uncertainty—this is the only 

rational thing for him to do, and if we accept that one ought to be 

rational in one’s moral choices (which we should) then choosing          

the lottery is the only morally justified act (what I have called “the 

subjectively right” thing to do).  

It turns out that this account also has some nice predictions 

regarding the kinds of lotteries we ought to use. Some of these will be 

discussed in the next section. 

 

WHICH LOTTERIES ARE JUSTIFIED? 

In this section, I will consider some of the predictions of my account 

regarding when, and which, lotteries are justified. I will aim to show that 

by accepting my account we gain an explanation for some judgements 

that, I think, are intuitive. This, in turn, serves as independent evidence 

in favour of my account.  

 

Case 1 

Let us begin with a paradigmatic case: there are three individuals, i, j, 

and k, all in need of a kidney. There is only one kidney available and   

the moral evaluator is uncertain regarding who should get the kidney. 
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His degrees of beliefs are such, though, that he believes it is more likely 

than not that i should get the kidney rather than j, it is more likely than 

not that j should get the kidney rather than k and it is more likely    

than not that k should get the kidney rather than i. In such a case, it is 

easy to confirm that my account will recommend the following lottery 

among i, j, and k:15 

 
M(ai) = (2q(aj>ak) – 1) / ((2q(aj>ak) – 1) + (2q(ai>aj) – 1) + (2q(ak>ai) – 1)) 
 
M(aj) = (2q(ak>ai) – 1) / ((2q(aj>ak) – 1) + (2q(ai>aj) – 1) + (2q(ak>ai) – 1)) 
 
M(ak) = (2q(ai>aj) – 1) / ((2q(aj>ak) – 1) + (2q(ai>aj) – 1) + (2q(ak>ai) – 1)) 
 

In other words, the weight individual i gets in the lottery, that is    

the chance that he will get the kidney (denoted M(ai)), should be 

proportional to the moral evaluator’s degree of belief that giving the 

kidney to j is better than giving it to k. Note that another sensitivity 

does not hold: it is not the case that the chance that individual i gets    

in the lottery is proportional to the moral evaluator’s degree of belief 

that giving the kidney to i is better than giving it to j. On the face of it,   

I find this phenomenon surprising. 

Now, this is simply a result of the assumptions presented in the 

previous section. However, here is one way to make this requirement 

intuitive. The moral evaluator believes that if k does not get the kidney,  

i should get it (since he believes that giving the kidney to i is, more likely 

than not, better than giving it to j). The only reason the evaluator thinks 

i should not get the kidney is that he believes it is more likely than not 

that it is better to give it to k than to i. Thus, to the extent that the 

evaluator believes the kidney should not go to k, he should give it to i. 

The extent that the evaluator believes the kidney should not go to k is 

his degree of belief that it is better to give the kidney to j than to give   

it to k. Thus, it makes sense that the evaluator should give the kidney to 

i with a probability that is proportional to his degree of belief that k 

should not get it, i.e., his degree of belief that it is better to give the 

kidney to j than to k.  

 

                                                 
15 This is the case when the agent assigns probability 0 to the possibility of every two 
acts being morally equivalent. Relaxing this assumption does not change anything 
substantial, but it does make the mathematical expressions a little bit more complex. 
For the sake of clarity, then, I chose to use the assumption. 
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Case 2 

Let us consider, now, the simplest case, which is also the one most 

discussed in the literature. This is the case in which there is no moral 

uncertainty and the moral evaluator is morally indifferent between two 

possible acts.16 For example, consider a kidney case in which there is one 

available kidney and two candidates, identical in every respect that the 

evaluator takes to be morally relevant. In this case, although my account 

allows the use of a lottery, it does not make it strictly (subjectively) 

superior to either one of the two definite acts (i.e., of giving the kidney 

to one of the candidates). Broome’s account (and any other account like 

it—in the sense discussed in the first section of this article) does make 

the lottery that gives equal chances to the two candidates (objectively) 

morally superior to both either of the two possible definite acts or any 

other lottery. 

Although this is surely an advantage of Broome’s account, as 

intuitively the lottery that Broome’s account recommends in this case   

is strictly morally superior to any other possible act, it is not a weakness 

of my account. This is so because, as explained, my account is not a 

rival to Broome’s account. When my account justifies using a lottery,     

it is because using a lottery is the subjectively right thing to do. When 

Broome’s account justifies using a lottery it is because doing so is       

the objectively right thing to do. In the case considered here, there is no 

moral uncertainty involved and thus my account does not apply. It is 

not inconsistent with my account, however, to accept the claim that       

a different account—like Broome’s—does apply in this case and does 

justify using a lottery (in the same way, it is not inconsistent with my 

account to deny that). 

It is important to note, however, that there is a price that Broome 

must pay here. If the fairness consideration adds some moral value      

to the lottery in case there is no moral uncertainty and the evaluator is 

morally indifferent between the two candidates, it should do so also in 

the case where there is no moral uncertainty, but the evaluator is not 

morally indifferent between the two candidates. 

For example, consider yet another kidney case involving only two 

candidates, but this time the candidates are identical in everything, 

apart from the fact that one has a slightly higher chance of a successful 

operation. According to Broome’s account, there must be some cases in 

which a lottery between the two definite acts would be morally superior 

                                                 
16 See, for example, Diamond 1967. 
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to the act of giving the kidney to the candidate with a slightly higher 

chance of a successful operation. 

In order to generate a lottery under Broome’s account you can 

reduce the difference in the chances of a successful operation between 

the two candidates as much as you want. At some point—if Broome’s 

account is not empty—you will reach a difference in chances such that 

choosing a lottery between the two candidates will become morally 

preferred to simply giving the kidney to the one with the (slightly) 

higher chance of success. 

However, if you are consistent in your choices, you will always make 

the same choice. Thus, if you face a similar choice over and over again 

you will always prefer the lottery to the option of simply giving the 

kidney to the candidate with the slightly higher chances. But no matter 

how small the difference is between the two candidates’ chances of a 

successful operation, after making this decision enough times this will 

result in preferring a policy that generates more loss of life to one that 

generates less.  

The trade-off has now become clear: if one is willing to accept that  

in the indifference case, a lottery is not strictly morally superior to the 

definite acts, one can deny that the fairness consideration is strong 

enough to lead to morally preferring a policy that generates more loss 

of life to one that generates less. If, on the other hand, one is willing    

to accept that sometimes a policy that generates more loss of life is 

morally superior to a policy that generates less, one can argue that in 

the indifference case, the lottery is strictly morally superior to any other 

act. 

A third option is to retain both the judgement that in the 

indifference case the lottery is strictly morally superior to any other act 

and the judgement that when the evaluator is not morally indifferent 

and there is no moral uncertainty involved, a lottery is never justified. 

One can do this by limiting (in a somewhat artificial way) Broome’s 

account (or any other account like it) to cases of indifference, or by 

arguing that, for some reason, Broome’s account does not apply to the 

case we consider. This move is unattractive for obvious reasons, but 

these reasons are theoretical, not ethical. 

Here, I am not going to argue in favour of any one of the three 

possible positions I have just presented. The point I want to make is 

that my account is consistent with all three of them and thus—no 

matter what your position regarding the above trilemma is—it should 



NISSAN-ROZEN / A NEW JUSTIFICATION FOR THE USE OF LOTTERIES 

ERASMUS JOURNAL FOR PHILOSOPHY AND ECONOMICS 69 

not stop you from accepting my account as valid. The reason for that is, 

again, that my account is silent regarding the question of the objective 

rightness of lotteries, and this is exactly what is at stake here. 

 

Case 3 

Consider again a single kidney case, but this time there are ten people, i, 

j, k, and l1... l7, waiting for the kidney. Assume that the evaluator, after 

thinking about the decision for a while and gathering relevant 

information, summarises his judgements using the following table:  

 
Table 8 

Age Chances of success 
Any other relevant 

consideration 

i k j 

j i k 

k j i 

l1… l7 l1… l7 l1… l7 

 

In other words, the evaluator believes that, from the point of view of 

the age of the candidates, i is more suited to get the kidney than j, j is 

more suited than k, and k is more suited than any of l1… l7. However, 

from the point of view of the chances for a successful operation, k is 

ranked above i, who is ranked above j, who is ranked above l1… l7. 

Finally, when the evaluator thinks of any other relevant moral 

consideration he ranks j above k, k above i, and i above l1… l7.  

What should the moral evaluator do? One thing he can do is to try to 

give a relative weight to each one of the categories and, using these 

weights, derive a combined ordering. If he manages to do this and get    

a transitive ordering, I believe he should simply give the kidney to the 

person ranked at the top, which will be, of course, either i, j, or k.  

The problem, though, is that this kind of case is exactly the kind in 

which the agent might become uncertain regarding which act is the best 

choice but does not have access to the degrees of moral value of the 

different acts (this is why the moral uncertainty arises in the first place) 

and so it might happen that—by following the LBC—he will find that    

he has intransitive preferences among i, j, and k. In such a case, my 
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account will suggest a lottery, but this lottery will give a positive chance 

only to i, j, and k and no chance at all to l1… l7.  

To see why this is the case, recall the analogy with a game that          

I used in the previous section to show why there always exists a lottery 

that is weakly preferred to any other act. It was demonstrated that, 

when the agent chooses such a lottery, his choice must constitute          

a Nash equilibrium in the game he plays against himself.  

Now, it is well known that a mixed strategies Nash equilibrium must 

give a positive chance only to rationalisable strategies, i.e., strategies 

that can survive the process of iterated elimination of dominated 

strategies. It is clear that giving the kidney to any of l1… l7 is not a 

rationalisable strategy because it is dominated by giving the kidney      

to either i, j, or k. Thus, according to my account, if the agent should use 

a lottery (which might or might not be the case depending on the agent’s 

beliefs) this lottery must give a positive chance only to i, j, and k. 

This seems to me very intuitive. Giving a positive chance to all of the 

candidates reduces the chances of i, j, and k, and this is so even though 

the evaluator is sure that it would be wrong to give the kidney              

to anybody but i, j, or k. So my account, again, gives the “right” 

recommendation in this case, although it was not designed in any way to 

do that. 

 

CONCLUSION 

I have presented an account of why choosing a lottery over a definite  

act is sometimes the (subjectively) right thing to do. According to this 

account, one ought always to choose the best act available when one 

can. When one cannot, one should use a lottery, and this is because 

using a lottery is the only rational thing to do in such a situation. So my 

account succeeds in satisfying both the requirement that moral 

preferences be rational and the requirement that one ought always to 

choose the best act available. Moreover, I have argued that the lotteries 

suggested by my account are the right ones. 

One can accept the account presented here for the rightness of 

lotteries and reject other accounts, but one can also accept my account 

alongside other accounts as different valid justifications for the use     

of lotteries. One can also take the account presented here not only as  

an account of the rightness of lotteries, but also as an account of the 

fairness of lotteries, but one does not have to do so. If one does, then 

one can think of being fair as trying the best one can to do the right 
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thing. If one does not, than this is ok too, as long as one still believes 

one ought to try the best one can to do the right thing. 
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